RADICALOID INTERMEDIATES

IN THE PHOTOCHEMISTRY OF 6-CYANOPHENANTHRIDINE N-OXIDE

Angelo Albini*and Elisa Fasani

Istituto di Chimica Organica dell'Università di Pavia, Viale Taramelli, 10, *27100 Pavia, Italy*

Ole Buchardt

ChemicaZ Laboratory II, The H. C. @rsted Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark

Summary: Irradiation of 6 -cyanophenanthridine N-oxide in the presence of $2,3$ dimethyl-2-butene resulted in a novel type of photoaddition with rearrangement to give 2 -cyano-8,8,9,9-tetramethyl-[d,f]-dibenzo-1,3-oxazonin and $6-$ (2-cyano-1,1,2-trimethylpropyloxy)phenanthridine as a minor product, which is regarded as strong evidence for an initial photochemical generation of a biradical, and not an oxaziridine as previously suggested.

The existence of oxaziridines as intermediates in the light-induced rearrangements of heteroaromatic N-oxides has been the subject of a good deal of speculation¹ and research.²⁻⁷

The intermediacy of oxaziridine species was originally postulated on the basis of the well documented nitrone to oxaziridine photoisomerization, 1a and it served very well to explain most of the observed photorearrangements of a wide variety of heteroaromatic N-oxides.¹ However, in a very thorough mechanistic and flash-photolysis study, Lohse² showed that eventual oxaziridines from isoquinoline or 3-methylisoquinoline N-oxides would have $\tau_1 \sim 10^{-9} - 10^{-10}$ sec, as opposed to $\tau_{\bm{\downarrow}}$ \sim 100 sec for the structurally related 2,3-diphenylox ziridine. 8 A part of this work was later confirmed, 3 and it was concluded that no oxaziridine intermediates took part in the photoisomerization of simple quinoline N -oxides.² Similarly, it was shown that the light-induced rearrangement of 3,5-diphenylpyridazine N-oxide took place in less than 20 nsec, which also led to the conclusion that no ground state oxaziridine intermediate was involved in the photochemistry of this type of N-oxide.⁴ Furthermore, a matrix isolation study of the light-induced behavior of pyridine N-oxide at 10K led to no evidence for the occurrence of an oxaziridine intermediate,⁵ and other similar attempts also failed. 9 Besides, some photoprocesses of heteroaromatic N-oxides clearly do not occur via oxaziridines.¹⁰

In contrast to this, the observation that 6-cyanophenanthridine N-oxide (1) upon irradiation in the presence of alcohols led to N-alkoxyphenanthridones (3), was regarded as evidence in favor of the oxaziridine intermediate (2), 11 which was later substantiated by a flash-photolysis and 77K matrix isolation study that showed the formation of an intermediate precursor for 3, attributed to the oxaziridine 2.⁶ Furthermore, a more elaborate matrix

isolation study of the photochemical behavior of 1 allowed the observation of a species which was stable at 77K in an ethanol or a MTHF glass, but which upon annealing reacted to give 3 (ethanol, $R = Et$) or 4 (MTHF). Similar results were obtained upon irradiation at ambient temperature, whereas irradiation in methylene chloride or acetone yielded the more "normal" product, 5.⁷ As discussed previously,^{2,4} it is inexplicable why the postulated intermediate oxaziridines from heteroaromatic N-oxide irradiation should differ so drastically in stability from their related analogues produced thermally or photochemically from nitrones, and these new results^{6,7} led us to examine the photochemistry of 1 further.

In aprotic solvents, irradiation of 1 was described to give 5 and 6 , with 4 and 9 sometimes occurring as minor products. 7,10 We similarly observed that irradiation of 1 in anhydrous benzene mainly leads to 5 , whereas irradiation of 1 in benzene containing $2,3$ -dimethyl-2-butene (DMB) resulted in no formation of 5. Simultaneously, the yield of 6 -cyanophenanthridine (4) was increased from 2% to 18%, that of 9 from 2% to 11%, and two new products, 7 (4%) and 8 (35%) were observed.¹² The deoxygenation to 4 and its increase upon irradiation in the presence of DMB is interesting since it is generally assumed that this type of reaction of N-oxides occurs only from a triplet state. 1,3 and it deserves further scrutiny.

The formation of the addition products 7 and 8 is concurrent with the isomerization to s , even with DMB concentrations as low as 0.02 M in benzene; in acetonitrile, β is also formed at the expense of δ , but without effecting the yield of β . The irradiation of 1 in the presence of 2,3-dimethyl-2-butene in ethanol only led to 3 (R = Et) as in pure ethanol.

We have furthermore shown that the reaction between 1 and DMB is monophotonic, that no ground-state complex is formed between 1 and DMB, and that 7 or 8 cannot be formed thermally or photochemically from any of the photoisomerization products from 1.

The photoaddition of 1 to an alkene in competition with the photoisomerization process of 1 is in disagreement with the intermediacy of the oxaziridine (2) in its ground state, but in agreement with the intermediacy of biradicaloid species, e.g., 10 and 11 (Scheme 1), which are formed directly from the excited state of *1,* since the reaction is monophotonic. Such primary products also would explain both the observed phenanthridone

and N-cyanophenanthridone formation in a reasonable manner. 11 Besides this, the observed light-induced reactions of 1 with alcohols to form 3 can be explained as occurring via hydrogen abstraction followed by radical combination and HCN elimination. The observed intermediates and transients 6.7 could just as well be various radicaloid species, and the mysterious instability of the oxaziridines postulated as primary ground state photoproducts from heteroaromatic N-oxides is dispensed with. The initially formed biradical would presumably be a singlet, and it is interesting that such radicals have recently been observed. 13

It is interesting that some of the early photochemistry of phenanthridine N-oxides also strongly indicates the intermediacy of radicals. Thus, the irradiation of 6-benzhydrylphenanthridine N-oxide in benzene was reported to give a mixture consisting of the corresponding N-benzhydrylphenanthridone, phenananthridone $(9, 17%)$ and tetraphenylethylene $(16%)$, and the photorearrangements of an optically active 1-aralkylphenanthridine N-oxide to the corresponding N-aralkylphenanthridone caused racemization in the product.¹⁴ This is in good agreement with the type of intermediates outlined in Scheme 1. Furthermore, the interesting effects of an exterior magnetic field on the photochemical behavior of isoquinoline N-oxide¹⁵ is also indicative of radicaloid behavior, and it has been observed that 1-neopentylisoquinoline N-oxide photolyzes to give isoquinoline, and that l-benzylisoquinoline N-oxide photolyzes to isoquinoline and $1,2$ -diphenylethane.¹⁶

Unless the phenomena discussed in this paper reflect a unique behavior of phenanthridine N-oxides, 17 it appears interesting to review the mechanistic proposals offered in the photochemistry of other heteroaromatic N-oxides.

- 1. (a) Spence, G. G., Taylor, E. C., Buchardt, O. <u>Chem. Rev</u>. 1970, <u>70</u>, 231-6 (b) Bellamy, F., Streith, H. Heterocycles, 1976, 4, 1391-1447.
- *2.* Lohse, C. J. Chem. Sot. Perkin Trans. 2, 1972, 22g-233.
- *3.* Ono, I., Hata, N. <u>Bull. Chem. Soc. Japan</u>, 1973, <u>46</u>, 3658-62.
- *4.* Tomer, K. B., Harrit, N., Rosenthal, I., Buchardt, O., Kumler, P. L., Creed, D. J. Am. Chem. Soc. 1973, 95, 7402-6.
- *5.* Buchardt, O., Christensen, J. J., Lohsen, C., Turner, J. J., Duncan, I. R. J. Chem. Sot. Chem. Commun. 1977, 837-8. Buchardt, O., Christensen, J. J., Nielsen, P. E., Koganty, R. R., Finsen, L., Lohsen, C., Becher, J. <u>Acta</u> Chem. Scand. 1980, B34, 31-39.
- *6.* Tokumura, K., Itoh, M., Kaneko, C. Tetrahedron Lett. 1979, 2027-30.
- *7.* Tokumura, K., Goto, H., Kashiwabara, H., Kaneko, C., Itoh, M. J. Am. Chem. soc. 1980, <u>102</u>, 5643-7.
- 8. **Splitter, J. S., Calvin, M. <u>J. Org. Chem</u>.** 1965, 30, 3427-36.
- *9.* BLchardt; O., Harrit, N:, Lohse, *C.:* A larqe varsty of quinoline, isoquinoline and quinoxaline N-oxides were irradiated in matrices at 77K and flash-photolyzed in order to observe an eventual oxaziridine intermediate. None of these experiments gave such evidence and were consequently never published.
- *10.* Albini, A., Barinotti, A., Bettinetti, G. F., Pietra, S. J. Chem. Sot. Perkin Trans. 2. 1977, 238-42 and references cited therein.
- 11. Kaneko, C., Hayashi, R., Yamamori, M., Tokumura, K., Itoh, M. Chem. Pharm. Bull. 1978, 26, 2508-14.
- 12. Yields of isolated products after chromatographic separation.₁The new compounds showed satisfactory elemental analyses, *W,* IR and lH-NMR and mass spectra, and the structure of 8 was confirmed by X-ray analysis. Furthermore, the structure of 7 was confirmed by its acid catalyzed hydrolysis to 9. Oberti, R. Private communication.
- *13.* Kelly, D. F., Rentzepis, P. M., Mazur, M. R. and Berson, J. A. J. Am. $Chem. Soc., 1982, 104, 3764.$
- *14.* Taylor, E. C., Spence, G. C. J. Chem. Sot. Chem. Commun. 1968, 1037-8.
- *15.* Hata, N., Ono, Y., Nakagawa, F. Chemistry Letters, 1979, 603. Hata, N., Ibid, 1976, 547-50.
- *16.* me, C. Private communication.
- *17.* About the difference in the photochemical behavior between phenanthridine N-oxide and other N-oxides, see Albini, A., Bettinetti, C. F., Minoli, G. J. Chem. Sot. Perkin Trans. 2, *1980, 1159-61.*

(Received in UK 31 August 1982)